
Quad-rotor P&S

Exercise 4: PID and LQR Implementation Continued

Learning objectives relevant for this exercise sheet:

v) Experienced the challenges of tuning a PID and LQR controller for achieving stable hover of
a quad-rotor, both in simulation and on the real-world system,

vi) Be able to write C++ code for implementing a PID and LQR controller.

The following steps are a brief outline for continuing from the PID implementation you started
in the previous exercise class, and then implement an LQR controller.

A) PID Control for altitude and yaw

Continue with the respective tasks from the previous exercise sheet. The goal of this task is
to implement a PID controller for altitude and yaw (i.e., for α and z) and tune the P, I, and
D gains accordingly.

• For tuning the P, I, and D gains you can consider using either: (1) the Ziegler-Nichols
oscillation method for getting an initial guess, (2) the gains you find using simulation,
or (3) directly tune that gains on the real system (slowly increase P until oscillation
starts, then slowly add a small amount of D to dampen the oscillation, and then slowly
add a small amount of I to correct any steady state errors).

B) LQR Control for (x, y) position

Recall that the linearised equations of motion indicate a complete decoupling between x
position and pitch angle from y position and roll angle, i.e.,ṗxp̈x
β̇

 =

0 1 0
0 0 g
0 0 0

 pxṗx
β

 +

0
0
1

 [ωy

]
,

ṗyp̈y
γ̇

 =

0 1 0
0 0 −g
0 0 0

 pyṗy
γ

 +

0
0
1

 [ωx

]
,

Thus we can use the pitch rate ωy to control a body frame x position error, and the roll rate
ωx to control a body frame y position error.

The goal of this task is to design an LQR controller for each of the x and y separately.

• The LQR controller synthesis method is briefly described in the additional material at
the end of this exercise sheet.

• Can you see a link between the gains of the LQR state-feedback controller and the P
and D gains of a PID controller? What property/feature of the dynamics and state
vector allow you to see this link?

C) Add an integrator for the (x, y) position

Once you have completed the implementation of your LQR controller for (x, y) position from
the previous task, observe the steady state offset in the tracking of an (x, y) setpoint. Try
adjusting the position of the battery by a few millimeters and observe the steady state offset
again. Does the position of the battery noticeably change the steady state offset? How does
the sensitivity compared with what you simulated previously?

The goal of this task is to add an integrator to each of the x and y position controllers to
remove the steady state offset.

1



• The LQR controllers you designed in the previous task use position and angle as the
state and compute a angular rate in the body frame as the input to be applied by the
Crazyflie. What type of offset are you correcting for if your integrator also computes
an angular rate adjustment?

• Thinking about the test of adjusting the battery position, what type of model error
should we correct for by adding an integrator on the x and y position errors? Recalling

the body frame torque actuators introduced in the script, namely τ
(B)
x and τ

(B)
y , imple-

ment an integrator that compensates for the steady state error by adjusting the motor
commands directly.

• It is recommended to connect your code to the buttons in the GUI for switching quickly
between the three options that you implement:

(1) No integrator
(2) Integrator that applies angular rates in the body frame to correct the steady-state

offset
(3) Integrator that applies torques in the body frame to correct the steady-state offset

• To connect your code to the GUI buttons, in the file StudentControllerService.cpp

search for the function customCommandReceivedCallback, and there you see a switch
case that allows you to trigger different code depending on which button was pressed.
It is recommended that you use one button for each of the following:

(1) One button to toggle the “angular rates integrator” on and off
(2) One button to toggle the “torques integrator” on and off
(3) One button to reset both integrators.

Pre-class task for next session

D) Custom Project

For the final experiment-based session you will be given the freedom to implement your own
ideas using your implemented (x, y, z, α) tracking controller as a basis. Take some time to
brainstorm with your partner a goal that you would like to achieve, some guidance and group
brainstorming will be conducted during the class.

A key element for maximising the utilisation of your time in the final experiment session is
to prepare the required code in the time between now and the final experiment session.

2



Additional info - LQR Controller Synthesis:
As a reminder, the acronym LQR stands for Linear Quadratic Regulator. The name itself

specifies the setting to which this controller design method applies:

• the dynamics of the system are linear,

• the cost function to be minimized is quadratic,

• the controller sythesised will regulate the states to zero.

The following information summarises the steps and equations for synthesising an infinite-
horizon LQR controller. The resulting controller is termed a “linear state-feedback controller”,
and commonly denoted by a matrix “K”. The state-feedback matrix K has one row for each input
to the plant, and one column for each state of the plant.

• The continuous-time and discrete-time linear system dynamics are denoted respectively as,

ẋ = Ax+Bu , xk+1 = ADxk +BDuk .

To convert the continuous-time system matrices, A and B, to discrete-time system matrices,
AD and BD, use the MATLAB function c2d, specifying zero order hold as the discretisation
method.

• You will need to choose the Q and R cost function matrices to achieve the desired flight
performance of your vehicle. The infinite-horizon LQR cost function is:

J∞ =

∫ ∞
0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt

• For choosing the Q and R cost function matrices you should think about the units of the
different elements of the state vector. For example, perhaps you wish to penalise a 10
centimeter deviation in x position the same amount as a 5 degree deviation in yaw.

• Use the MATLAB functions care and dare to compute solutions for the continuous and
discrete time algebraic Riccati equation respectively. Read the help documentation to be
sure you understand what these functions compute.

• The infinite-horizon LQR design equations for a continuous-time linear-time-invariant
(LTI) system are (taken directly from the Control Systems I lecture notes):

0 = −A>P∞ − P∞A + P∞BR
−1B>P∞ − Q (1a)

u(t) = −K∞ x(t) (1b)

K∞ =R−1B>P∞ (1c)

where (1a) is the Riccati equation to solve for P∞, (1b) is the control law to implement, and
(1c) is the state-feedback gain matrix.

• The infinite-horizon LQR design equations for a discrete-time LTI system are:

0 = − P∞,D + A>DPD,∞AD − A>DPD,∞BD

(
B>DPD,∞BD +R

)−1
B>DPD,∞AD + Q

(2a)

uD(k) = −KD,∞ xD(k) (2b)

KD,∞ =
(
B>DPD,∞BD +R

)−1
B>DPD,∞AD (2c)

where the subscript (·)D indicates that the quantities are for a discrete-time system.

• Both the care and dare function can return a state-feedback gain matrix, be careful of the
sign convention if you use this matrix.

3



Additional info - PID Control for (x, y) position:
If you wish to also implement a PID controller for (x, y) position, this is the relevant task

description.

Based on the learnings and outcomes from implementing a PID controller for altitude and yaw:
design, implement and, tune a PID controller for controlling the x and y position.

Recall that the linearised equations of motion, provided in the “additional info” of exercise
sheet 2, indicate a complete decoupling between x position and pitch angle from y position and
roll angle, i.e.,ṗxp̈x

β̇

 =

0 1 0
0 0 g
0 0 0

 pxṗx
β

 +

0
0
1

 [ωy

]
,

ṗyp̈y
γ̇

 =

0 1 0
0 0 −g
0 0 0

 pyṗy
γ

 +

0
0
1

 [ωx

]
,

Thus we can use the pitch rate ωy to control a body frame x position error, and the roll rate
ωx to control a body frame y position error.

We again have that the dynamics of the pitch (or roll) angle is sufficiently faster than the
dynamics of the x (or y) position, and thus we can also reasonably control the position error with
a nested controller. The “outer control” loop takes an x position error and requests a pitch, β,
angle to correct for this, then the “inner loop” takes the error to this requested pitch, β, angle and
requests an angular rate about the body frame y-axis, ωy, to correct for this. This architecture is
shown in Figure 1,

• Before testing out your chosen P, I, and D gains on the real system, you should create this
architecture in your simulation and see what sign conventions are required and to get an
indication of the controller gains and behaviour.

Figure 1: Showing the explained nested architecture for controlling the body frame x position error
through the actuator of angular rate about the body frame y-axis ωy.

4


