
Quad-rotor P&S

Exercise 3: Familiarisation with Practical Setup and PID
Implementation

Learning objectives relevant for this exercise sheet:

v) Experienced the challenges of tuning a PID/LQR controller for achieving stable hover of a
quad-rotor, both in simulation and on the real-world system,

vi) Be able to write C++ code for implementing a PID/LQR controller.

The following steps are an outline for getting familiar with the practical setup, the “D-FaLL-
System”, and for how to write and debug the code your PID implementation. Any additional
information required for each step will be provided in class.

A) Getting your Crazyflie recognised by Vicon

The Vicon motion capture system detects and tracks anything that is round and reflective,
called a marker. When three (or more) such markers are attached to an object with a fixed
(non-symmetric) configuration, then the Vicon system can recognised this as a specific object
and provides the (x, y, z) position and (γ, β, α) attitude information of that object.

The goal of this task is to make three such markers and attach them to your Crazyflie.

B) Familiarisation with the “D-FaLL-System”

A tour of the software system that allows you to control the Crazyflie will be given in class.
The goal of this task is that you learn the following:

• How to launch the system,

• How to connect to your Crazyflie and start/stop a flight,

• How to emergency stop your Crazyflie, and when to do this,

• What safety measures are enforced by the system and how to know when one of these
safety measures is triggered,

• Where to add your implementation of the outer loop controller,

• Where and how to compile any code changes you make,

• How to use the “.yaml” file for changing parameters “in-flight”,

• How to display data of your Crazyflie in real time using the rqt plotting tool.

• How to connect a variable from your outer loop controller to the DebugMsg that is
provided for debugging your controller using the rqt plotting tool.

C) Rotation of error (approximately) into body frame

This task is the practical version of the task from exercise sheet 2 with the same name.
Provide a reference of 10 degrees for yaw, and then a reference of 60 degrees for yaw. How
does the (x, y) tracking performance differ? Did one of the safety measures trigger?

The goal of this task is to implement the rotation of the outer controller errors into the body
frame and remedy the (x, y) tracking performance.

In the StudentControllerService.cpp file where you implement your outer loop controller,
the function convertIntoBodyFrame is already defined and called appropriately by the outer
loop controller. Implement the simple rotation into body frame that was your solution to
the respective task from exercise sheet 2. Then re-compile your code and test the tracking
performance of the same yaw references.

Now try a step change of 340 degrees, can you explain the behaviour observed?
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D) P Control for altitude

In exercise sheet 2 you implemented and tuned a PID controller for altitude and yaw control.
The tuning heuristic suggested was the Ziegler-Nichols (Z&N) oscillation method. This
method requires the system to be controlled with a P-only controller and the proportional
gain is increased until sustained oscillations are observed, referred to as the “ultimate gain” in
the handout and denoted Ku, with the period of these oscillations referred to as the “ultimate
period” and denoted Pu.

The goal of this task is to implement a P -only controller for altitude (i.e., inertial frame z(I)),
and find a value for Ku and Pu on the real system.

• Run your simulations again to check what proportional gain is expected to result in
sustained oscillations of altitude.

• Implement a P-only altitude controller in your outer loop controller, i.e., in the function
calculateControlOutput that is in the StudentControllerService.cpp file.

• Make the P gain of your controller a parameter in the “.yaml” file so that you can tune
the P gain during flight without needing to recompile for every change.

• Start from half of the Ku gain you found in simulation and increase until (sustained)
oscillations are observed. Display the z(I) data using the rqt plotting tool and measure
the (approximate) period of the oscillations observed.

• Remember that motor saturation may prevent sustained oscillations from being ob-
served, so it may informative to use rqt to display control actions of your outer loop
controller.

• Check how the error input to your controller is being computed, i.e., reference minus
measurement or measurement minus reference, and ensure that you choose the sign of
your proportional gain accordingly.

• For guidance on adding a “.yaml” parameter, you can mimic how the mass is defined
and used. Specifically, in the StudentController.yaml file the relevant line of code is:
mass : 28

And in the StudentControllerService.cpp file the relevant line of code is:
yaml cf mass in grams = getParameterFloat(nodeHandle for paramaters,"mass");

Where the variable yaml cf mass in grams is a class variable that is defined in the
header file StudentControllerService.h as:
float yaml cf mass in grams = 25.0;

E) PID Control for altitude Using the Ku and Pu for the altitude controller from Task D,
you can apply the Z&N rules of thumb to compute a starting set of P, I, and D gains.

The goal of this task is to implement a PID controller for altitude and tune the P, I, and D
gains.

• For computing the derivative and integral of the error, the yaml parameter control frequency

is useful, and its value is already loaded into the class variable named yaml control frequency.

• Before testing out your chosen P, I, and D gains on the real system, you should run
your simulation and take note of what hand tuning adjustments were required in the
respective task of exercise sheet 2 to get desirable tracking performance.

F) PID Control for yaw

Repeat Tasks D and E for the yaw controller, i.e., for the α controller.
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