
Quad-rotor P&S

Exercise 1: Simulation Development

Learning objectives relevant for this exercise sheet:

ii) Be able to simulate a general N -rotor vehicle for the purpose of testing and tuning controller
and estimator designs,

iii) Be able to explain how flight performance is affected by changes in the parameters of the
N -rotor vehicle, for example mass, centre of gravity location, propeller aerodynamics.

Pre-work Tasks
Complete the introduction to Simulink tutorial in Section 3.1 of the course script to famil-

iarise with the Simulink tools required to complete this exercise sheet. Section 3.1.1 provides an
introduction for those who have never used Simulink before, and Section 3.1.2 provides a brief
explanation of the Simulink template provided for this exercise sheet. You should also read
through the comments in the file “exercise01 simulation parameters.m” for hints and
to understand what variables are available for use in the Simulink model.

In-class Tasks
The following steps are a guideline for developing the template Simulink model provided into

a high-fidelity N -rotor vehicle simulation that will allow you to assess the empirical-stability and
performance of a controller without damaging your real-world vehicle.

A) Equations of motion

Add the non-linear, continuous-time, equations of motion to the template N -rotor vehicle
Simulink model provided.

• Before working in Simulink, explain why there are seemingly 15 equations of motion
despite the full state vector being defined as a 12-dimensional. For convenience, the full
state definition and equations of motion are stated in the additional material at the end
of this exercise sheet.

• Use the “all-in-one-block” approach described in Section 3.1.3 of the course script.
The file “exercise01 fcn eom template.m” provides a template for the code to write
in the “MATLAB Function” block that is used for the equations of motion.

• All the variables needed to complete this task are specified and described by the com-
ments in the file “exercise01 get vehicle paramters.m”.

• Confirm the equations have been correctly added to the Simulink model by observing
the reference tracking performance.

B) Sensitivity to model mis-match and feed-forward (equilibrium) thrust

In the file “exercise01 get vehicle paramters.m”, adjust the mass used for the controller
by {−4%,−2%,+2%,+4%} and measure the steady-state offset from the reference, i.e., ad-
just the variable named “nrotor vehicle mass for controller”. Is the offset linear in the
mis-match?

Adjust also the propeller layout dimensions used for the controller by {−4%,−2%,+2%,+4%}
and measure the steady-state offset from the reference, i.e., adjust the variable named
“nrotor vehicle layout for controller”. Is the offset linear in the mis-match?

The goal of this task is to derive and implement a computation of the feed-forward (equilib-
rium) thrusts.

1



• The feed-forward architecture is briefly described in the additional material at the end
of this exercise sheet.

• Recall the 4 actuators defined in the script, namely the total thrust force ftotal, and the

torque about each axis of the body frame (τ
(B)
x , τ

(B)
y , τ

(B)
z ), see Figure 2.7 in the script.

• Derive all the possible state and input combinations that are equilibrium points of the
non-linear, continuous-time equations of motions.

• For an N -rotor vehicle, the actuator and motor thrusts are related as:
ftotal

τ
(B)
x

τ
(B)
y

τ
(B)
z

 =


1 1 · · · 1
y1 y2 · · · yN
−x1 −x2 · · · −xN
c1 c2 · · · cN


︸ ︷︷ ︸

Mlayout


f1
f2
...
fN

 ,

and thus the motor thrusts required to produce a set of actuations can be computed
using the (pseudo) inverse of Mlayout.

• Open the file “exercise01 compute equilibrium thrusts.m”, delete the code that is
already there, and implement the pseudo inverse of Mlayout for computing the equilib-
rium thrusts.

• For a vehicle with N≥5 rotors, is the pseudo inverse of Mlayout an appropriate choice?
Explain your answer.

• Does the inverse always exists when N=4 rotors? If not, find a simple quad-rotor where
the inverse does not exist.

C) Discrete time controller

In reality, measurements of the vehicle’s state are only available in discrete time, and new com-
mands can only be sent to the propellers at discrete time instants. Convert your continuous-
time model to a hybrid model where the non-linear dynamics of the vehicle are simulated
in continuous time, the full-state measurements are taken at a particular frequency, and the
controller computations are performed at a different frequency.

• This is implemented most easily with the “Zero-Order Hold” block in Simulink.

• The frequencies should be specified as parameters that are easy to change. When
state estimation is not performed, these frequencies are typically the same, and for the
experiments we will collect measurements at 200Hz.

• In the file “exercise01 simulation parameters.m” you find the the variable named
“K lqr full state”, and the comments there provide instructions for how to choose
the controller feedback matrix appropriate for the frequency.

• How is the step change tracking performance affected by the frequency of control com-
putations? Does the closed loop system become unstable at some frequency?

• Test out the following two combination: (i) set the controller computations to a fre-
quency of 20Hz, but use the controller parameters designed for 200Hz, (ii) set the con-
troller computations to a frequency of 200Hz, but use the controller parameters designed
for 20Hz. Explain the results using intuitive arguments.

2



Additional Tasks

D) Additional Task: Measurement noise

Measurements of the vehicle’s state are always corrupted by some level of noise. Add zero-
mean Gaussian (white) noise to each of the states separately.

• This is implemented most easily by using the “Random Number” block (found in the
“Sources” category) in Simulink to inject a vector with independent samples.

• The measurement noise should be added in a manner that allows you to quickly select
between simulating the vehicle with and without noise.

• How is the step change tracking performance affected by the amplitude of the added
noise? Is the vehicle’s performance more sensitive to noise on particular measurements?

• Is zero-mean white noise a realistic assumption? What other types of noise might exist
for particular measurements.

E) Additional Task: thrust-to-command conversion

Thus far the controller has requested a particular thrust from the propellers of our N -rotor ve-
hicle. However, in reality on the Crazyflie 2.0 hardware we will use for the experiments, the
micro-controller sends an integer command in the range [0− 65535], where 0 is zero-thrust,
and 65535 is full-thrust. Add to the controller a conversion from force requested to this
integer command, and add to the N -rotor vehicle model the conversion from this integer
command to thrust produced by the respective propeller.

• For the propellers used on the Crazyflie 2.0, this static “integer command -to- thrust”
conversion was identified as:

thrust [N] = thrustmax

(
1.3385 · 10−10 cmd2 + 6.4870 · 10−6 cmd

)
where cmd is the integer command in the range [0− 65535], and thrustmax is the max-
imum thrust in Newtons produced by the propeller at cmd = 65535.

• The purpose of including this conversion in the simulation is so that the simulated
controller architecture and tuning matches that of the real-world system.

3



Additional info - equations of motions summary:
To save the trouble of flipping back-and-forth through the script, the following re-states the

choice of the full state, the equations of motion, and the equation for the rotation and transforma-
tion matrix. The full state is defined as:

~p

~̇p
~ψ

~̇ψ

 =


position

linear velocity
attitude

angular velocity

 , where ~ψ =

γβ
α

 =

 roll
pitch
yaw

 , (1)

for which the non-linear, continuous-time equations of motion are:

~̇p =
d

dt
(~p) (2a)

~̈p =

p̈xp̈y
p̈z

 =
1

m

 (I)R
(B)(~ψ)


0
0

N∑
i=1

fi

 +

 0
0
−mg


 , (2b)

~̇ψ =
d

dt

(
~ψ
)

(2c)

~̈ψ =

γ̈β̈
α̈

 = T−1(~ψ)
(
~̇ω − Ṫ (~ψ) ~̇ψ

)
, (2d)

~̇ω =

ω̇xω̇y
ω̇z

 = J−1



∑N
i=1 fi yi∑N
i=1 −fi xi∑N
i=1 fi ci

 − (~ω × J ~ω)

 . (2e)

The rotation matrix, transformation matrix, its inverse, and its time derivative are given by the
following expressions:

(B)R
(I)(~ψ) =

 cβ cα cβ sα −sβ
(−cγ sα + sγ sβ cα) (cγ cα + sγ sβ sα) sγ cβ
(sγ sα + cγ sβ cα) (−sγ cα + cγ sβ sα) cγ cβ

 , (3)

T (~ψ) =

1 0 − sin(β)
0 cos(γ) sin(γ) cos(β)
0 − sin(γ) cos(γ) cos(β)

 , (4)

T−1(~ψ) =

1 sin(γ) tan(β) cos(γ) tan(β)
0 cos(γ) − sin(γ)
0 sin(γ) sec(β) cos(γ) sec(β)

 , (5)

Ṫ (~ψ, ~̇ψ) =

0 0 −β̇ cos(β)

0 −γ̇ sin(γ) γ̇ cos(γ) cos(β) − β̇ sin(γ) sin(β)

0 −γ̇ cos(γ) −γ̇ sin(γ) cos(β) − β̇ cos(γ) sin(β)

 . (6)

Recall that the transformation matrix T relates the body rates and Euler angular rates as:

~ω = T (~ψ) ~̇ψ (7)

4



Σ controller Σ

plant

feed forward

reference +

equilibrium

thrusts

+
error thrust

adjustments

+ propeller

thrusts
−

Figure 1: Schematic of the feed-forward architecture for an N -rotor vehicle.

Additional info - Feed forward architecture:
It is common to design a controller for making adjustments around a chosen equilibrium point.

It is important to remember that the equilibrium point chosen is a combination of:

(i) an equilibrium state of the system, and

(ii) the equilibrium input that keep the system at that equilibrium state.

For an N -rotor vehicle, the inputs to the vehicle are the thrust for each propeller, and therefore a
controller designed for a linearised N -rotor vehicle system is a function that:

• should receive the error between the current state of the system and the reference equilib-
rium state, and

• returns the thrust adjustments that should be made to the equilibrium thrust of each
propeller.

This equilibrium input is commonly referred to as the feed-forward input, and the feed-forward
architecture for an N -rotor vehicle is shown in Figure 1. The control function can therefore be
described in words as:

propeller
thrusts

=
equilibrium

thrusts
+

thrust
adjustments

. (8)

5


